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1. Introduction.

Let IR" be the n-dimensional Euclidean space, and let the Euclidean inner product
and norm be denoted by (-,-) and |- | respectively. A multifunction 7 : R" = R"

is said to be a monotone operator if
(z — 2" Jw —w') >0 whenever w € T(z), w' € T(z"). (1.1)

It is said to be mazimal monotone if, in addition, the graph {(z,w) € R" x R" |
w € T(z)} is not properly contained in the graph of any other monotone operator
T:R"=R".

Such operators have been studied extensively because of their role in convex
analysis and certain other fields. A fundamental problem is that of determining an
element z such that 0 € T(z). Some of the most important problems in the area
of convex programming and related fields, such as variational inequality problems,
can all be cast into this general framework. (See e.g. [19].)

We denote by Z the solution set of the equation 0 € T(z), and let 77! be
the inverse of T, i.e., T-Hw) = {z € R" | w € T(2)}. Obviously T~ is maximal
monotone if and only if T is maximal monotone. The effective domain of T is
defined by the set {z € R" | T(z) # 0}. Suppose the operator T' can be written in

the split form
T=T+h, (1.2)

where 7 : IR" = R" is a maximal monotone operator and h : R" — IR" is a
single-valued function. Then the original problem of finding z such that 0 € T(z)

is equivalent to the following problem:
Find a z € R" satisfying 0 € 7(2) + h(z). (1.3)
Suppose Z # (). Consider the following iteration
A= (T Ty NI - h)(F), k=0,1,2,---. (1.4)

It has been shown by Minty [11] that the prozimal mapping (I + 7)1 is a single-
valued mapping and its effective domain is all of R". Therefore, the iteration (1.4)
is well defined. It is easy to see that z € Z if and only if Z is a fixed point of the
algorithmic mapping defined by (1.4).



As pointed out by Tseng [22, 23] and Chen and Rockafellar [3-6], the iteration
(1.4), despite its simplicity, is a powerful tool for the development of decomposition
methods. Numerous existing algorithms for convex programming and variational
inequality problems can be shown to be special cases of this iteration. Hence,
any results on the convergence of (1.4) have numerous implications for all these

algorithms. As a special case, it is easy to see that the proximal point algorithm is
also included in the family (1.4) by taking h = 0.

Convergence of the splitting algorithm has been extensively studied [1b, 3-7,
9, 16, 23]. As to the rate of convergence, Chen and Rockafellar [6] proved, under
some commonly used hypothesis, that the iteration scheme converges linearly from
the very beginning if h is strongly monotone (which implies in turn that 7' itself
is strongly monotone). In [3-6], Chen and Rockafellar also explored the possibility
of introducing “step sizes” in the iteration and replacing the identity operator I
with some specifically chosen mappings to enhance the convergence under the same
strong monotonicity assumption. But the assumption that 7' is strongly monotone
(or less stringently, strictly monotone) often excludes some important applications.
For instance, the assumption certainly does not hold when the solution z is not

unique.

In this paper, we establish asymptotic rate-of-convergence results without such
a strong monotonicity assumption on 7. Instead, we relate the rate of convergence to
some “growth conditions” on 7! and A1 at some specific points, as Luque [10] did
for the proximal point algorithm. With a careful study of the geometrical aspects
of the convergence of the sequence {2*} generated by (1.4), we are able to draw
conclusions about the rate of convergence of {z*} itself, while Luque’s conclusions
on the proximal point algorithm are mostly on the convergence of {dist(Z,2*)} to
0 [10]. Hence we even get new results on the proximal point algorithm as a special

case of the iteration scheme (1.4) when h = 0.

We focus on the fundamental iteration scheme (1.4). The result that is most
useful to us is the following Proposition 1.1 given by Gabay, where the convergence
is established on the assumption of some co-coercive property of h. A function

h:Z — IR" is said to be co-coercive with modulus A > 0 if

(h(z) = h(z"),z = 2")y > Mh(z) = h(Z")|* Vz€ Z, V' € Z. (1.5)
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Notice that a co-coercive function is Lipschitz continuous and monotone. Moreover,

a co-coercive function with modulus A > 1 is firmly nonexpansive.

Proposition 1.1 [7, Section 6]. If h is a co-coercive function with modulus greater
than i, then the sequence {z*} generated by the iteration (1.4) converges to a

solution of (1.4) from any starting point z° in Z.

Since we are going to investigate the asymptotic rate of convergence of the
sequences generated by the splitting iteration (1.4) when h satisfies the condition

in Proposition 1.1, we make the following blanket assumptions regarding 7 and h.

Assumption 1.2 (blanket assumptions).
(a) The multivalued mapping 7 : R" = IR" is a maximal monotone operator.
(b) The function h : R" — IR" is co-coercive with modulus A > 1.

(¢) The solution set Z of problem (1.3) is nonempty.

The rest of the paper is organized as follows. In Section 2, we present some
fundamental facts about the splitting iteration (1.4) and give the structure of the
solution set Z of the problem, together with the definitions of some terminology
that will be used repeatedly throughout the paper. In Section 3, we establish the
()- and R-rates of convergence of the sequence generated by the splitting algorithm.
At the end of the section, we also point out some significant consequences of these
new results. Finally, in Section 4, we specialize to the case of h = 0 and derive new

results regarding to the proximal point algorithm.

2. Fundamental Properties.

Let
= (I —h)z"), k=01,2,--. (2.1)

yk
Then 21 = (I +7)7'(y*), and we have
yk+1 :(I_h)(I—I_T)_lyk? k:071727"" (22)

The sequence {y*} as a by-product of the iteration will play an important role in

our analysis. In addition, we shall make use of the notation
P=I+T7T)"'and Q:=T-P=(T+77 ") (2.3)
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Chen and Rockafellar [4, Proposition 3.4] observed that the algorithmic map-
ping defined by (1.4) is nonexpansive. The following proposition gives more detailed

estimates on the sequences {z*} and {y*}. Define
Wt = QyF) e T(ZFTY), k=0,1,2,---. (2.4)

Proposition 2.1 (some useful inequalities). Under the blanket assumption 1.2, for
any z € Z there hold

=2 ot —w? <yt -y <P 2P = plh(2R) ()P (2.5)

and

' =gl 0t = w4 pl A = R < Ty - gl (2.6)
for k=0,1,---, where w := Q(y) € T(2), y := (I — h)(2) and p =2\ — 1.
Proof. Let y:= (I —h)z and y' := (I — )z’ for arbitrary z and z’ in IR". Then
y—y' =z—2 —(h(z) = Kz")), and we have

ly —y'[* = |z = '[F = 2(z = 2", h(z) = B(2")) + (=) = h(z")]*

<z =27 = (2A = 1)|h(z) = h(=")]%.

Let z = 2% and 2' = z, we get the second half of (2.5). The first half of (2.5) follows

directly from [19, Proposition 1]. Applying (2.5) to two consecutive k’s, we get
(2.6). O
Proposition 2.2 (structure of Z). The set h(Z) is a singleton. Denoting the
unique element in h(Z) by v, we have —v € T(Zz) for all z € Z and

Z =T Y —v)nh Y(v). (2.7)
Proof. Let Z and Z’ be two arbitrary elements in Z. Then both Z and ' are fixed
points of the algorithmic mapping defined by (1.4). Let z* = Z' in (2.5). Then

M = 2" and it follows from (2.5) that h(z') = h(z). Now for every z € Z we have
0 € 7(2) + h(z), which is equivalent to —v € 7(z), and (2.7) follows directly. O

Introducing the notation
g = T_l(—f)) and Zp := h_l(f)), (2.8)

we can write Z = Z7 N Z;,. Note that both Z7 and Z; are closed convex sets in IR”
because 7 and h are maximal monotone. (See e.g. [24].) Let B(v,6) denote the

open ball in IR" with center at v and radius é.
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Definition 2.3 (growth conditions). The multifunction 71 is said to satisfy the
growth condition (in some neighborhoods of —v) with the pair of positive constants
(r, ) if there exists 6 > 0 such that

YVw € B(—v,6), VzeT '(w) dist(Zr1,2) < ajw — (—v)|". (2.9)

Similarly, the multifunction h™! is said to satisfy the growth condition (in some
neighborhoods of v) with the pair of positive constants (s, [3) if there exists 6 > 0
such that

Yw € B(v,6), Vze€h Hw) dist(Zp, z) < Blw — o). (2.10)

For polyhedral 7 and h, there exists positive & and 3 such that these condi-
tions are satisfied with (1,«) and (1, 3) respectively by Robinson [17]. Actually,
when r = s = 1, (2.9) and (2.10) reduce to the locally upper Lipschitz conditions
introduced in [17] with modulus & and 3 on 71 and h™! respectively. Hence the
growth conditions here may be viewed as a slight generalization of that concept. For
instance, (2.9) may be called as a locally upper Lipschitz condition with modulus

o and order r on 7 1.

The growth condition is certainly much weaker than the strong monotonicity

condition. On one hand we have the following proposition.

Proposition 2.3. If a multifunction F : IR" = IR" is strongly monotone with
modulus n > 0, i.e.,

(z =2 w—w)>nlz—2"? Ywe F(z2), Vo' € F(2'), (2.11)

then

|z — 2| <n7Hw —w'| Vze FHw), V2’ € F71(w'), (2.12)

or in other words, the inequality in the growth condition for F holds with (1,n71)

globally everywhere (not only within certain neighborhood of some specific point).

Proof. Note that w € F(z) and w' € F(z') are equivalent to = € F~!(w)
and z' € F~1(w') respectively. Hence (2.12) follows directly from (2.11) and the

inequality |z — 2'|Jw — w'| > (z — 2", w — w'). O
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On the other hand, there is no lack of examples where the growth condition is

satisfied while the strong monotonicity condition is not.
Example 2.1. Consider the function F : IR — IR defined as
log z, if z > 1,

F(z)=¢0, if —1<z<1,
—log(—z), if z < —1.

Obviously F' is maximal monotone, but not strongly monotone. With some ele-
mentary calculus, it is easy to verify that F' is co-coercive with modulus 1 and that
within a certan neighborhood of w = 0, the growth condition for F~! is satisfied
with the pair (1,2).

Next, we give a multidimensional example of optimization. Recall that the

normal cone N¢(z) of a closed convex set C' at z € C is defined by
Ne(z) ={ueR" | (u,u' —z) <0,u’ € C}. (2.13)

Moreover, N¢(z) is the subgradient of the corresponding indicator function é¢ of

C at z [18].
Example 2.2. Let f : R*> — R* be the function defined as
(z11logz1 — z1), if 29 > 1,

f(Zl,ZQ): —1, if -1 SZI S]_,
(—21 log(—z1) + 21>, if 23 < —1.

Let S be the closed convex set S = {z € IR*||z| < 2}. Consider the convex

programming problem

min f(z) subject to z € S.
Let 7 = Ng, and let h =V f, i.e.,

(log z1,0), if 21 > 1,
h(z) = ¢ (0,0), if —1 <2z <1,
(—log(—21),0), ifz < -—1.

Then the problem of minimization is equivalent to the equation 0 € 7(z) + h(z).

Obviously, h in this problem is not strongly monotone. We show, in the following,
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that all the blanket conditions and the growth conditions for the problem are sat-
isfied. Note that Z =SN{z €R*| —1<2z <1} and h(Z) =0 in this problem.
Hence according to (2.8),

Zr =T Y0)=S and Z, =h™'(0) = {2z € R*| —1<z <1}.

It follows from Example 2.1 that & is co-coercive with modulus 1 and that the growth
condition (2.10) on h~1 is satisfied with the pair (1,2). Now for the multifunction
7 = Ng, the set Z7 coincides with the effective domain of 7. Hence dist(Z7,z) =0
for all z € 77! (w), whatever w is. Therefore, the growth condition (2.9) on 71 is
satisfied with any positive pair (r, «).

Recall that the tangent cone Tc(z) of C at z € C is the polar of the normal

cone

To(z) = No(z) = {u € R" | (u,u") <0,u" € Ne(2)}. (2.14)

Obviously
CCTc(z)+2z VzeCl. (2.15)

Hence for any z € Z, we have Z N (N4(2) + 2) = {z}, which is equivalent to
ZrNZyN(Nz(z)+z)={z}, or

(Z1 — )N (Zn — 2) N N4(2) = {0}, (2.16)

A slightly more stringent condition on the sets Zr, Z, and Nz(z), which will be

used in our analysis, is as follows.

Definition 2.4 (regularity condition). The sets Z7 and Zj, are said to satisty the

regularity condition if
Tz (2)NTz,(2)NNy(2)={0} Vze Z. (2.17)

Observe that T7(z) N Nz(z) = {0}. Hence (2.17) will be true if the inclusion
Tyrrz,(2) C Tz (2) N Tz, (%) holds actually as an equality

Tsrnz(2) = Tz, (2) 0 Tz, (2). (2.18)
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For polyhedral 7 and h, both Z7 and Zj are polyhedral convex sets. Therefore
Ty, (z) and Tz, (%) coincide with Z7 — z and Zj, — Z respectively in some neigh-
borhood of z, and the regularity condition is automatically satisfied. In the general
case, a sufficient condition for (2.18) to hold for all z € Z is [la, Table 4.3]

0 € int(Zr — Zp). (2.19)
Specifically, the problem in Example 2.2 satisfies (2.19), as could be easily verified.

3. Rates of Convergence for the Splitting Algorithm.

Lemma 3.1. Let {z*} be an infinite sequence generated by the splitting iteration
(1.4) such that z* — z and 2* # z for all k. Suppose the regularity condition on
Z1 and 7y, is satisfied. Let o* and 8% be defined by the following equations for all

k
dist(Tz, (%), 25 — 2) = aF|2% — 2],

(3.1)
dist(Tz, (2), 25 — 2) = g¥|=F — 2|,
Then there exists o > 0 such that
lik{ninf<max{ozk,ﬂk}> >0 > 0. (3.2)

Proof. We prove the lemma by contradiction. Suppose that such a o does not
exist. Then there is a subsequence {2}, where K is an infinite subset of the set

of all nonnegative integers, such that

max{a®, ¥} = 0 as k — oo, k€ K. (3.3)
Define
k=
uko— = _—=
2% — 2]

Then all u*’s are in the compact set {u € IR" | |u| = 1}. Therefore there exists some

u with |u| = 1 such that

b — G as k— oo, ke K,
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where K' is an infinite subset of K. Observe that the distance function dist(C, ) is

positive homogeneous when C' is a cone. Hence (3.3) implies

dist(TZT(E),uk) —0as k— oo, keK',
dist(Tz, (2),u*) = 0 as k — oo, k € K',

which in turn implies
dist(Tz, (%), u) = dist(Tz, (2),u) =0, (3.4)

because the distance function dist(C, -) is continuous. Notice that the tangent cones
Ty, (z) and Ty, (Z) are closed sets in IR". Hence it follows from (3.4) that

u €Ty (2) and u € Ty, (2). (3.5)

Now we claim that u € N;(2). Indeed, if u ¢ N;(z), then there exists some
2" € Z such that
(z' —zu) =¢>0.

Hence for sufficiently large k € K', there holds

But zF — 2/ =2 — 74+ 7 — 2" Then

A e e R | L o L
<|z=2P 4 |2F =22 —el2* — 2

< |z —#'|? for sufficiently large k € K,

which makes z*¥ — z impossible because the algorithm mapping defined by (1.4) is
nonexpansive (by [4, Proposition 3.4] or by (2.5)), and z' is a fixed point of that

mapping. Therefore we get
ue Ty (2)NTy,(2) N Ny(2z) with u # 0,
which contradicts the regularity condition 2.4. O
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Lemma 3.2. Ifin addition to the conditions of Lemma 3.1, the growth conditions
on T~! and h™! are satisfied with (r,a) and (s, 3) respectively, then for any t > 0,
there hold, for y = (I — h)(z) and sufficiently large k,

% = <|yk+1 — Um0 4 (%)wqykﬂ _ /=1
+ p(%)z/ﬂykﬂ _ y|2(1/3_1/t)>—t/27 (36)
and
||Z:’:—2__z|f| = <|Zk+2 —ZPO0 4 (?)quk—i—z _ Z[20/r=1/0
" '0<¥>2/8|2'“+2 - 2|2(1/8—1/0> o

Proof. By Proposition 2.2, the inequalities (2.6) and (2.5) can be written as
[y = g+ [ = (o) plh(ET) — o <yt - g, (3.8)

= e e ) | e e e 2L A Bl R € X)
where w1 := Q(y*) € T(z**1). The growth condition 2.3, together with (2.15)
and (3.1), yields, for sufficiently large k,

oF|2F — 2| = dist(Tz, (2)

B*2F — 2] = dist(Ty, (2)

z,28) < dist(Z7, 2F) < ajw® — (=0)|",

z,2%) < dist(Zn, 2%) < BlR(zY) — o),
or equivalently

(0 fa)!/7]F — 2|7 < ot — (o), (3.10)
(B%/8)1 /214 = 2[V* < [h(=") - o). (3.11)
Substituting (3.10) and (3.11) in (3.8) and (3.9), and noticing that |y* —y| < |z% — 7|
by the second half of (3.9), we get
k41 k41
=g () P () = g < - g (312)
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_ Oék+1 2/r _2/r _ ﬂk 2/s _12/s
45— 2P () A 2P < 2 = () 2P (3.18)

s
for sufficiently large k. By (3.12), we have

k+1

" gl 1

|y"? —§| B <1 + <%>2/r|yk+1 _y|2/r_2 ‘|‘P<ﬂkﬁ+1>2/8|yk+1 _g|2/s_2>1/27

from which (3.6) follows. Applying (3.13) to two consecutive k’s and noticing that

|22 — 2| < |2k — 2|, we have

|2+ +2 — 2| 1
|2k —z| — (1 + <a1;+2>2/r|2k+2 — z[2/r=2 4 p<ﬁ’“g2>2/5|zk+2 _ 5|2/s—2>1/27
from which (3.7) follows. O

An infinite sequence {u*} with u* — u, u* # u, is said to converge at least
linearly, Q-superlinearly with order ¢ or Q-sublinearly if
Y p y y
ut*t — 4l

limsup —F—— <7y < 1,
k—oo |uf —ul

) luf ! — g o
lim sup ﬁ =0, for all ¢ satisfying t >¢ > 1
k—o0 ur —u
or
lub ! — g o
limsup ————— =0, for some ? satisfying 0 <t <1
k—oo |uf —ul

correspondingly. (cf. [12]. The definition of ()-sublinear convergence here is some-
how different from the one given in [12].) Similarly, {u*} will be said to converge

at least R-linearly, R-superlinearly with order ¢ or R-sublinearly if

lim sup [u® — a|'/* <~ < 1,

k—oo

lim sup |u® — ﬂ|1/tk =0 for all ¢ satisfying ¢ >t > 1

k—oo

or

limsup [u* — u'/* =1

k—oo

correspondingly.
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Theorem 3.3 (Q-rates on {y*}). Let {z*} be an infinite sequence generated by
the splitting iteration (1.4) such that z*¥ — z and ¥ # 2 for all k. Suppose both
the regularity condition on Z7 and Zj and the growth conditions on T ! and h™!
with (r,a) and (s,[3) respectively are satisfied. Let t = min{r,s}, and let o be
the positive constant defined in (3.2). Then the sequence {y*} defined by (2.1)
converges to y = (I — h)(2) at least Q-linearly with
k+1 _ o B

lim sup M < (1+ min{(o/a)*", p(a/ﬂ)2/8}> 1/2, (3.14)
QQ-superlinearly with order t or (Q-sublinearly, according to whethert =1,¢ > 1 or
0<t<l

Proof. The convergence of {y*} follows directly from Proposition 2.1. If £ = 1,
let + =1 in (3.6) and take limsup as k — co. We get (3.14) by Lemma 3.1. Hence
{y*} converges at least Q-linearly.

If t > 1, then for any ¢ satisfying ¢ > ¢ > 1, take limsup in (3.6) as k — oc.

We have, by Lemma 3.1,
k+1

lim sup v —ul _ 0. (3.15)

i
oo [yF —y]
Hence {y*} converges at least Q-superlinearly with order .

If t < 1, then for any ¢ satisfying 0 < t < ?, take limsup in (3.6) as k — oc.

We have, by Lemma 3.1,
ly ! — g
7 = 0. (3.16)

lim sup —
k—oo |yt — 9|

Hence {y*} converges at least Q-sublinearly. O

Theorem 3.4 (R-rates on {y*}). Suppose the conditions of Theorem 3.3 are sat-
isfied. Then the sequence {y*} converges to z at least R-linearly or R-superlinearly

with order t, according to whether t =1 ort > 1.

Proof. The conclusions follows from the fact that the ()-linear or Q)-superlinear

convergence implies the corresponding R-convergence. (See [12].) O

Theorem 3.5 (two-step Q-rates on {z*}). Suppose the conditions of Theorem 3.3

are satisfied. Then the sequence {z*} converges to z at least two-step Q-linearly
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With
lim su 7|Zk : < (1+ min{(a/a)z/r (0/5)2/8}> i (3.17)
p k 5| s P ) .

k— oo |Z

two-step Q-superlinearly with ordert or two-step Q-sublinearly, according to whether

t=1,t>1lor0<t<1.
Proof. Similar to the proof of Theorem 3.3. Use (3.7) instead of (3.6). O

In the following, we single out an important special case when both 7 and h

are polyhedral functions in the sense of Robinson [17].

Corollary 3.6 (special case for polyhedral 7 and h). Suppose both T and h in
(1.2) are polyhedral. Then there exist & > 0, 3 > 0 and o > 0 such that for all
2% € IR", the sequences {z*} and {y*} defined by (1.4) and (2.1) have the following
properties

(a) {y*} converges to some y € (Z — v) at least Q-linearly with
y ' -y

. Yl . 2 2
11I£ris§pm < (1 + min{(o/a)”, p(o/B) }>

—1/2

(3.18)

(b) {z*} converges to some z € Z at least R-linearly and two-step Q-linearly

with
|2%+2 — 2| —1/2

< (14 min{(o/a)?, p(a/B8)*}) "7, (3.19)

limsup ————
k—oo |2F—Z|

provided that the iteration does not terminate finitely with some z* € 7.

Proof. For polyhedral 7 and h, there exist &« > 0 and g > 0 such that the growth
conditions 2.3 on 71 and h~! are satisfied with (1,«) and (1, 3) respectively by
[17, Corollary]. Observe also that Z7, Z, and Z are all polyhedral convex sets.
Hence Ty, (z) and Ty, (%) coincide with Z7 — z and Zj, — Z respectively in some
neighborhood of z. Therefore the regularity condition 2.4 is also satisfied.

Recall that any convex set C' can be partitioned into the collection of relative
interiors of all its faces [18] and that the tangent cone Te(u) for all u € C in the
interior of the same face are same [2, Theorem 2.3]. Now there are only finitely
many faces for each polyhedral convex set [18]. Hence there are only finitely many

different Tz (Z)’s and Tz, (z)’s for all z € Z. Then it follows that there is a uniform
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o > 0 such that (3.2) in Lemma 3.1 holds for all z € 7. Therefore we have the
corollary by Theorems 3.3, 3.4 and 3.5. O

Whether the blanket assumptions are satisfied, so that the iteration converges
in the first place by Gabay’s proposition, certainly depends on the particular split-
ting, as well as on the operator T in the original problem. However, the requirement
that the modulus A > 1 in the co-coercivity blanket assumption 1.2(b) does not
actually impose severe restrictions to the applications of the algorithm. If & is co-
coercive, say, with (positive) modulus A < 1, we can simply rescale the problem

by multiplying the original equation 0 € T(z) with A. This does not change the

solution of the original problem. However, the function (M%) in the scaled splitting
AT = AT + Ah
becomes co-coercive with modulus 1. Iteration (1.4) now takes the form
A= (T4 M) YT = M)(25), k=0,1,2,---. (3.20)

This amounts to introduce a “step length” in the iteration (1.4). We adopt the
unscaled approach in the paper to keep the notation as simple as possible. The
interested reader will have no difficulty extending all the results into the scaled

form.

Now, a large number of numerical methods for convex programming and vari-
ational inequality problems (such as the projection method of Goldstein [8], certain
asymmetric projection methods, and decomposition methods) can all be formu-
lated as splitting iterations. With careful rescaling and appropriate splitting, most
of them could be put in the framework of forward-backward iteration (1.4) with the
co-coercivity blanket assumption being satisfied. (See e.g. [7, Theorem 6.1] and [22,
23].) Hence, when applied to affine variational problems, the corollary ascertains the
linear rate of convergence for these algorithms without any further assumptions on
the strict monotonicity on the function involved. This is something new compared
with the previous results (cf. [6, 13, 14, 15]). The strict monotonicity assumption,
if any (such as implied in the conditions of [15, Theorem 2.9]), would exclude some
important applications of these algorithms, as pointed out by Tseng [22]. According
to Corollary 3.6, we can claim, e.g., that the decomposition methods of Tseng [22]
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for extended linear-quadratic programming have the linear rate of convergence even

when the problem is not fully quadratic [20, 25].

4. Rates of Convergence for the Proximal Point Algorithm.

In the special case when h = 0, the iteration (1.4) reduces to the prozimal point
algorithm [19], and we have y* = z¥ for all k. Now v = h(2) = 0, Z;, = h~}(v) = R",
and T =T, Z7 = Z. Hence (2.17) in the regularity condition holds automatically.
Moreover, (2.10) in the growth condition holds for any positive pair (s, /3), and
particularly for s = r. Therefore we have t = r in Theorems 3.3, 3.4 and 3.5, with
the right-hand sides of (3.14) and (3.17) being reduced to (1 + (a/oz)z/r>_1/2. In
the following, we are going to strengthen these results by first proving that actually

o — 1 in Lemma 3.1 for this special case.

To put the iteration in a more general scheme, we further allow the prozimal
constant ¢ > 0 to vary with the iteration as Rockafellar did in [19]. Then we get
some new results that complement Rockafellar’s [19] and Luque’s [10] earlier results
on the proximal point algorithm.

With the notation

Py = (I +ceT)7 1 (4.1)

the proximal point iteration can be written as

S = P%), k=0,1,2,---. (4.2)

Lemma 4.1. Let {z*} be an infinite sequence generated by the proximal point
iteration (4.1) such that z* — 2 and z* # 2 for all k. Let o* be defined by the

following equation for all k
dist(T5(2), 2 — 2) = a*|2F — 2| (4.3)
Then o — 1 as k — oo.

Proof. Obviously o* € [0,1] for all k. Now we prove that 1 is the only cluster
point of {a*}.
Suppose {a*} has another cluster point & < 1. Define

k zF —

= |Zk _

I8

[

I8
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Then (similar to the proof of Lemma 3.1,) there is a subsequence {a*}x, where K is

an infinite subset of the set of all nonnegative integers, such that for some u € IR"
with |u| = 1, there hold

uf — u and dist(Ty(2),u*) = 6 <1 as k — 00, ke€K. (4.4)

Recall that in the proof of Lemma 3.1, we have already shown that such a u
must be in Nz(z). Therefore

dist(N (%), @) = 0. (4.5)

Now the tangent cone T is the polar of the normal cone N . Hence it follows from

Moreau decomposition [18, Theorem 31.5] that
dist*(Ty(2),a) = |u|* — dist*>(N4(%),ua) = 1, (4.6)
which contradicts (4.4) in view of the continuity of the distance function. O

Lemma 4.2. If in addition to the conditions of Lemma 4.1, the growth condition
on T~ =T~ is satisfied with (r, «), then for any t > 0, there holds, for sufficiently

large k.
k+1 _ o k+1 3
||ZZk — ZF’| < <|zk+1 . 2|2(1—1/t) n Ci<aa )2/r|2k+1 _ §|2(1/r—1/t)> t/2‘ (4.7)

Proof. By [19, Proposition 1], we have
B e o i R E 1 (4.8)

where wkt! := Qr(y*) € ¢, T(2**1) with Qx = I — Py, or equivalently ¢, 'w*+! €
T(z5*1). The growth condition, together with (2.15) and (4.3), yields, for sufficiently
large k.,

ozk|zk —zZ| = dist(Tz, (2) + E,Zk) < dist(ZT,zk) < oz|c,;1wk . (4.9)

Solving for |w*| and substituting in (4.8), we get

k+1

|Zk+1 . 2|2 + Ci(a—>2/r|2k+1 _ 2|2/r S |Zk 3 2 (4‘10)
o
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for sufficiently large k. Hence

|2F 1 — 7| 1
— < 7 , (4.11)
|2k — 2 <1+Ci<aa ) |Zk+1_5|2/r—2)1/2
from which (4.7) follows. O

Theorem 4.3 (Q-rates on {z*}). Let {z*} be an infinite sequence generated by
the proximal point iteration (4.2) such that z* — 2 and ¥ # z for all k. Suppose
the growth condition on T—! = T~ is satisfied with (r, «), and ¢y is bounded away
from 0, 1.e.

liminfe, =:¢ > 0. (4.12)

k—o0
(a) If ¢ < 400, then the sequence {z¥} converges to z at least Q-linearly with
lim sup |5~ 7 L
h—no  |2E—z| T (1 +(E/a)2)1/2’
Q)-superlinearly with order r or ()-sublinearly, according to whether r =1,r > 1 or

O0<r<l

(4.13)

(b) If ¢ = +o0, then the sequence {z*} converges to z at least Q-superlinearly

even when r = 1.

Proof. Ifr =1,let t =1in (4.7) and take limsup as k — oco. We get (4.13) by
Lemma 4.1. Hence {z*} converges at least Q-linearly or Q-superlinearly, according

to whether ¢ is finite or +o0.

If r > 1, then for any ¢ satisfying r > ¢ > 1, take limsup in (4.7) as k — oo.
We have, by Lemma 4.1,

= 0. (4.14)

Hence {z¥} converges at least with Q-order r.

If r < 1, then for any ¢ satisfying r < ¢t < 1, take limsup in (4.7) as k — oo.
We have, by Lemma 3.1,

lim sup | — f| =0. (4.15)
Hence {z¥} converges at least Q-sublinearly. O

When T is a polyhedral function, the growth condition is satisfied with some
(1, ) by [17, Corollary]. Therefore we have the following corollary as a special case

of Theorem 4.3.
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Corollary 4.4 (special case for polyhedral T). Let {z*} be an infinite sequence
generated by the proximal point iteration (4.2) such that z* — z and ¥ # 7 for
all k. Suppose T is a polyhedral function and ¢y, is bounded away from 0 with
liminfy_.ocp =: ¢ > 0.

(a) If ¢ < 400, then the sequence {z*} converges to z at least Q-linearly and
(4.13) holds.

(b) If ¢ = +oo, then the sequence {z*} converges to z at least Q-superlinearly.

Hence we conclude that when the proximal point algorithm is applied to the
extended linear-quadratic programming problems [20, 21], the sequence generated
by iteration (4.2) converges @-linearly (or @-superlinearly if ¢ = +00) even when
the solution of the problem is not unique. This result is an improvement of earlier
result of Rockafellar and Wets [21, Theorem 6] in the special case when the exact

proximal point iterations is implemented.

The result in this section on the proximal point algorithm differs from that of
Rockafellar [19] in the aspect that we here do not require the solution set Z to be
a singleton. It also differs from that of Luque [10] in the aspect that conclusions
here are on the rates of convergence of {z*} itself to the limit point z, instead on
the rate of convergence of {dist(Z,2¥)} to 0. But we here need the exact proximal
point iteration being implemented, while [19] and [10] (in most cases) allow for
some “inexact” proximal point iterations. Under certain additional assumptions,
the results in this paper can also be extended to the inexact case. These topics will

be treated elsewhere.

Acknowledgments. The author thanks Professor J.-S. Pang for his very helpful

comments on an earlier version of the paper.
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